

 [image: DQuality]

DQuality [https://github.com/bfrosik/data-quality] is an open-sourced Python
package to perform data integrity and quality assessment at the Advanced
Photon Source.

This guide is maintained on
GitHub [https://github.com/bfrosik/data-quality/tree/master/doc].

	About

	Install

	Cofiguration

	API reference

	Examples

	Frequently asked questions

	Credits

	Howto

Indices and tables

	Index

	Module Index

	Search Page

About

Data Quality assurance is an essential task to provide consistency, accuracy, reliability and reproducibility of scientific results [C1], [C2], [C3], [C4].

DQuality [https://github.com/bfrosik/data-quality] is a python toolbox to asses the quality of raw and processed data collected at the Advanced Photon Source (APS).

DQuality [https://github.com/bfrosik/data-quality] verifies that all experiment components EPICS [http://www.aps.anl.gov/epics/] Process Variables (PVs)
like motor positions, storage ring parameters etc. are valid and their values are within a predefined range.

DQuality [https://github.com/bfrosik/data-quality] verifies that the raw data files saved in the Data Exchange [http://dxfile.readthedocs.io] hdf5 file format contain a valid data and meta-data structure and that existing dependencies between the data and meta-data structure are correct.

DQuality [https://github.com/bfrosik/data-quality] provides live monitoring of the above functionalities for all raw data created in the active directory.

Install

This section covers the basics of how to download and install DQuality [https://github.com/bfrosik/data-quality].

Contents:

	Pre-requisites

	Installing from source

	Installing from Conda/Binstar (coming soon)

	Updating the installation (coming soon)

Pre-requisites

Each of the verifier requires a parameter configuration file. The configuration files must define schemas and verifier’s properties and be located
in the user account home directory under a .dquality/default folder.

	~/.dquality/default/dqconfig.ini

The schemas should be saved under “default/schemas” folder and contain the following files:

	~/.dquality/default/schemas/pvs.json containing the list of Process variable (PV) of your beamline PVs with their acceptable value range.

	~/.dquality/default/schemas/tags.json containing the list valid HDF file tags, attributes and array dimentions.

	~/.dquality/default/schemas/dependencies.json containing the list of valid relation among data sets in the same HDF file.

	~/.dquality/default/schemas/limits.json containing the threshold values for the quality check calculations.

	~/.dquality/default/schemas/data_tags.json containing the dictionary of hdf tags of data sets by data type.

	~/.dquality/default/schemas/quality_checks.json containing the dictionary of quality check calculations. The keys are the slice verification methods, values are lists of stat methods.

Different instruments generating data that require different sets of configuration files can be configured as ~/.dquality/instrument1,
~/.dquality/instrument2 etc. with the same schemas subfolder structure.

Installing from source

Clone the DQuality [https://github.com/bfrosik/data-quality]
from GitHub [https://github.com] repository:

git clone https://github.com/bfrosik/data-quality.git DQuality

then:

cd DQuality
python setup.py install

Installing from Conda/Binstar (coming soon)

First you must have Conda [http://continuum.io/downloads]
installed, then open a terminal or a command prompt window and run:

conda install -c

Updating the installation (coming soon)

Data Management is an active project, so we suggest you update your installation
frequently. To update the installation run in your terminal:

conda update -c

For some more information about using Conda, please refer to the
docs [http://conda.pydata.org/docs].

Cofiguration

This describes configuration of mandatory and optional parameters. The common section depicts parameters used by all
verifiers. A list of additional parameters specific for each verifier follows.

common configuration

	‘log_file’:

optional, a log file name including path. If not specified, the log file default.log will be created in the running
directory

	‘time_zone’:

optional, time zone that will be displayed as part of timestamp in log file. If not specified, it defaults to
‘America/Chicago’

pv verifier

	‘pv_file’:

mandatory, json file name including path that specifies pv requirements

hdf verifier

	‘schema’:

mandatory, json file name including path that specifies hdf tags requirements

	‘verification_type’:

optional. Currently the software supports ‘hdf_structure’ and ‘hdf_tags’ types. If not specified it defaults to
‘hdf_structure’ type. When configured to ‘hdf_structure’ the tags and attributes specified in ‘schema’ file will be
evaluated. If configured to ‘hdf_tags’, only presence of the tags specified in ‘schema’ file will be evaluated.

dependency verifier

	‘dependencies’:

mandatory, json file name including path that specifies hdf tags dependency requirements

data verifier

	‘limits’:

mandatory, json file name including path that specifies limits used in quality checks ‘quality_checks’: mandatory,
json file name including path that lists all quality methods that will be used to validate the data.

	‘file_type’:

optional, data file type. Currently the software supports FILE_TYPE_GE and FILE_TYPE_HDF formats. If not specified it
defaults to FILE_TYPE_HDF format.

	‘data_tags’:

required for hdf type file. json file name including path that maps hdf tags to data types (‘data’, ‘data_dark’,’data_white’) that will be verified.

	‘report_type’:

optional, defines report specifics. Currently the software supports ‘none’, ‘full’, and ‘errors’ types. If not specified it defaults to ‘full’ type. If the type is ‘none’, no report file will be created; if the type is ‘errors’, only the bad frames will be reported; and for the ‘full’ report type all frames and check results are reported.

	‘report_dir’:

optional, a directory where report files will be located. If not configured, the report files are created along the data files.

	‘feedback_type’:

optional, defines a real time feedback when validating data. For data verifier it should not be set, or set to
“none’

monitor

	‘limits’:

mandatory, json file name including path that specifies limits used in quality checks ‘quality_checks’: mandatory,
json file name including path that lists all quality methods that will be used to validate the data.

	‘file_type’:

optional, data file type. Currently the software supports FILE_TYPE_GE and FILE_TYPE_HDF formats. If not specified it
defaults to FILE_TYPE_HDF format.

	‘data_tags’:

required for hdf type file. json file name including path that maps hdf tags to data types (‘data’, ‘data_dark’,
‘data_white’) that will be verified.

	‘report_type’:

optional, defines report specifics. Currently the software supports ‘none’, ‘full’, and ‘errors’ types. If not specified it defaults to ‘full’ type. If the type is ‘none’, no report file will be created; if the type is ‘errors’, only the bad frames will be reported; and for the ‘full’ report type all frames and check results are reported.

	‘report_dir’:

optional, a directory where report files will be located. If not configured, the report files are created along the data files.

	‘feedback_type’:

optional, defines a real time feedback when validating data. For data verifier it should not be set, or set to
“none’

accumulator

	‘limits’:

mandatory, json file name including path that specifies limits used in quality checks ‘quality_checks’: mandatory,
json file name including path that lists all quality methods that will be used to validate the data.

	‘quality_checks’:

mandatory, json file name including path that lists all quality methods that will be used to validate the data.

	‘report_type’:

optional, defines report specifics. Currently the software supports ‘none’, ‘full’, and ‘errors’ types. If not specified it defaults to ‘full’ type. If the type is ‘none’, no report file will be created; if the type is ‘errors’, only the bad frames will be reported; and for the ‘full’ report type all frames and check results are reported.

	‘feedback_type’:

optional, defines a real time feedback when validating data. For data verifier it should not be set, or set to
“none’

real_time verifier

	‘limits’:

mandatory, json file name including path that specifies limits used in quality checks ‘quality_checks’: mandatory,
json file name including path that lists all quality methods that will be used to validate the data.

	‘quality_checks’:

mandatory, json file name including path that lists all quality methods that will be used to validate the data.

	‘report_type’:

optional, defines report specifics. Currently the software supports ‘none’, ‘full’, and ‘errors’ types. If not specified it defaults to ‘full’ type. If the type is ‘none’, no report file will be created; if the type is ‘errors’, only the bad frames will be reported; and for the ‘full’ report type all frames and check results are reported.

	‘feedback_type’:

optional, a list that defines a real time feedback when validating data. Currently the software supports ‘log’,
‘console’, and ‘pv’. If the list contains ‘console’, the software will print the failed verification results in the real time; if the list contain ‘log’, the failed results will be logged.

	‘detector’:

mandatory, specifies EPICS Area Detector prefix, as defined in the area detector configuration

	‘detector_basic’:

mandatory, specifies EPICS Area Detector second prefix that is used for the basic PVs, as defined in the area detector
configuration

	‘detector_image’:

mandatory, specifies EPICS Area Detector second prefix that is used for the image PVs, as defined in the area detector
configuration

	‘no_frames’:

mandatory, number of frames that the real time verifier will evaluate. It will run undefinately when set to -1.

API reference

DQuality [https://github.com/bfrosik/data-quality] provides the following funtionalities:

	“PV”: Before data collection start, verify that the experiment setup PVs, i.e. all required setup data, are valid and their values are within a predefined range.

	“Hdf”: verify the correctness of the data and meta-data structure in an hdf5 file.

	“Hdf Dependencies”: verify dependencies between the data and meta-data structure in an hdf5 file.

	“Data”: verify the quality of the data after data is collected in a file. A set of QC functions is provided to assess the image quality against different criteria (mean, dynamic range, structural similarity, multi-scale structural similarity, visual information fidelity, most apparent distortion, etc.) [C4]. The resulting “limit”, related to the quantitive QC functions, defines whether the data is of good or poor quality. The limit values, at first, are set by the research/tests with trial data sets. The QC function “limit” range will eventually be learned by implementing a learning mechanism. Any calculated “result” quality parameter is stored, in the case of hdf format, in the file itself with a corresponding tag. If the data file format supports only raw data (no meta-data), the quality parameter results are stored in a separate file with a name corresponding to the data file.

	“Monitor”, “Monitor_polling”: monitor the active data collection directory and run “Data” on each new file.

	“Accumulator”: monitor the active data collection directory where each new file is part of the same data set.

	“Realtime”: verifies the quality of the active EPICS Channel Access data in a real time.

	“Check”: provides a wrapper to “PV”, “Hdf”, “Hdf Dependencies”, “Data”, “Monitor”, and “Accumulator”.

	“realtime.Check”: provides a wrapper to “Realtime”.

DQuality Modules:

	dquality.realtime.real_time

	dquality.realtime.check

	dquality.accumulator

	dquality.check

	dquality.data

	dquality.hdf

	dquality.hdf_dependency

	dquality.monitor

	dquality.pv

dquality.realtime.real_time

dquality.realtime.check

dquality.accumulator

dquality.check

dquality.data

dquality.hdf

Please make sure the installation Pre-requisites are met.

This file contains verification functions related to the file structure.
It reads configuration parameters “schema_type” and “schema” to
determine first which kind of file verification is requested, and a
schema that defines mandatory parameters. If any of the parameters is
not configured, it is assumed no file structure verification is requested.

Functions:

	init(config)
	This function initializes global variables.

	report_items(list,

 dquality.hdf_dependency

dquality.hdf_dependency

Please make sure the installation Pre-requisites are met.

This module verifies that each of the PVs listed in the configuration file
exist and their values are set within the predefined range.

The results will be reported in a file (printed on screen for now).
An error will be reported back to UI via PV.

Functions:

	init(config)
	This function initializes global variables.

	verify(conf,

 dquality.monitor

dquality.monitor

 dquality.pv

dquality.pv

Please make sure the installation Pre-requisites are met.

This module verifies that each of the PVs listed in the configuration
file exist and their values are set within the predefined range.

The results will be reported in a file (printed on screen for now).
An error will be reported back to UI via PV.

Functions:

	init(config)
	This function initializes global variables.

	verify(conf)
	This function reads the schemas/pvs.json as set in the dqconfig.ini file.

	read(pv_str)
	This function returns a Process Variable (PV) value or None if the PV does not exist.

	state(value,

 Examples

Examples

This section contains various DQuality examples. Please make sure the installation Pre-requisites are met.

	File Accumulator

	Data Quality

	HDF File

	Dependency Check

	File Monitor

	PV Check

	Realtime Check

 File Accumulator

File Accumulator

DQuality Folder Accumulator example. (Download file: accumulator_check.py)

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78

	#!/usr/bin/env python
-*- coding: utf-8 -*-

###
Copyright (c) 2015, UChicago Argonne, LLC. All rights reserved.
#
Copyright 2015. UChicago Argonne, LLC. This software was produced
under U.S. Government contract DE-AC02-06CH11357 for Argonne National
Laboratory (ANL), which is operated by UChicago Argonne, LLC for the
U.S. Department of Energy. The U.S. Government has rights to use,
reproduce, and distribute this software. NEITHER THE GOVERNMENT NOR
UChicago Argonne, LLC MAKES ANY WARRANTY, EXPRESS OR IMPLIED, OR
ASSUMES ANY LIABILITY FOR THE USE OF THIS SOFTWARE. If software is
modified to produce derivative works, such modified software should
be clearly marked, so as not to confuse it with the version available
from ANL.
#
Additionally, redistribution and use in source and binary forms, with
or without modification, are permitted provided that the following
conditions are met:
#
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
#
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in
the documentation and/or other materials provided with the
distribution.
#
* Neither the name of UChicago Argonne, LLC, Argonne National
Laboratory, ANL, the U.S. Government, nor the names of its
contributors may be used to endorse or promote products derived
from this software without specific prior written permission.
#
THIS SOFTWARE IS PROVIDED BY UChicago Argonne, LLC AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL UChicago
Argonne, LLC OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.
###
import sys
import os
import argparse
from dquality.check import accumulator as acc
from os.path import expanduser

def main(arg):

 parser = argparse.ArgumentParser()
 parser.add_argument("instrument", help="instrument name, name should have a matching directory in the .dquality folder")
 parser.add_argument("fname", help="folder name to monitor for files")
 parser.add_argument("type", help="data type to be verified (i.e. data_dark, data_white, or data)")
 parser.add_argument("numfiles", help="number of files to monitor for")
 parser.add_argument("repbyfile", help="boolean value defining how the bad indexes should be reported.")

 args = parser.parse_args()
 instrument = args.instrument
 fname = args.fname
 dtype = args.type
 num_files = args.numfiles
 report_by_file = args.repbyfile

 home = expanduser("~")
 conf = os.path.join(home, ".dquality", instrument)

 bad_indexes = acc(conf, fname, dtype, num_files, report_by_file)
 return bad_indexes

if __name__ == "__main__":
 main(sys.argv[1:])

 Data Quality

Data Quality

DQuality Data Quality example. (Download file: data_check.py)

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85

	#!/usr/bin/env python
-*- coding: utf-8 -*-

###
Copyright (c) 2015, UChicago Argonne, LLC. All rights reserved.
#
Copyright 2015. UChicago Argonne, LLC. This software was produced
under U.S. Government contract DE-AC02-06CH11357 for Argonne National
Laboratory (ANL), which is operated by UChicago Argonne, LLC for the
U.S. Department of Energy. The U.S. Government has rights to use,
reproduce, and distribute this software. NEITHER THE GOVERNMENT NOR
UChicago Argonne, LLC MAKES ANY WARRANTY, EXPRESS OR IMPLIED, OR
ASSUMES ANY LIABILITY FOR THE USE OF THIS SOFTWARE. If software is
modified to produce derivative works, such modified software should
be clearly marked, so as not to confuse it with the version available
from ANL.
#
Additionally, redistribution and use in source and binary forms, with
or without modification, are permitted provided that the following
conditions are met:
#
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
#
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in
the documentation and/or other materials provided with the
distribution.
#
* Neither the name of UChicago Argonne, LLC, Argonne National
Laboratory, ANL, the U.S. Government, nor the names of its
contributors may be used to endorse or promote products derived
from this software without specific prior written permission.
#
THIS SOFTWARE IS PROVIDED BY UChicago Argonne, LLC AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL UChicago
Argonne, LLC OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.
###
"""
Please make sure the installation :ref:`pre-requisite-reference-label` are met.

This script is specific for beamline 32id.

This example takes two mandatory parameters:
instrument: a string defining the detector that will be used. User can enter one of these choices:
'32id_nano', '32id_micro'. The instrument determines the directory to look for a configuration file that will be used.
file: a file to be verified for dependencies according to schema.

This script calls quality_check verifier.

"""
import sys
import os
import argparse
from dquality.check import data as dquality_check
from os.path import expanduser

def main(arg):

 parser = argparse.ArgumentParser()
 parser.add_argument("instrument", help="instrument name, name should have a matching directory in the .dquality folder")
 parser.add_argument("fname", help="file name to do the tag dependencies checks on")

 args = parser.parse_args()
 instrument = args.instrument
 fname = args.fname

 home = expanduser("~")
 conf = os.path.join(home, ".dquality", instrument)

 bad_indexes = dquality_check(conf, fname)
 return bad_indexes

if __name__ == "__main__":
 main(sys.argv[1:])

 HDF File

HDF File

This module requires the “schema” section of the
dqconfig.ini file to be set.
If “schema” is not configured, the function returns True, as no verification is needed.

In case the “verification_type” of the
dqconfig.ini file
is set, the follow up logic determines, what type of verification should be applied.

Currently, for the HDF schema, both “hdf_structure” and “hdf_tags” verification types are supported.

DQuality HDF file check example. (Download file: hdf_check.py)

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72

	#!/usr/bin/env python
-*- coding: utf-8 -*-

###
Copyright (c) 2015, UChicago Argonne, LLC. All rights reserved.
#
Copyright 2015. UChicago Argonne, LLC. This software was produced
under U.S. Government contract DE-AC02-06CH11357 for Argonne National
Laboratory (ANL), which is operated by UChicago Argonne, LLC for the
U.S. Department of Energy. The U.S. Government has rights to use,
reproduce, and distribute this software. NEITHER THE GOVERNMENT NOR
UChicago Argonne, LLC MAKES ANY WARRANTY, EXPRESS OR IMPLIED, OR
ASSUMES ANY LIABILITY FOR THE USE OF THIS SOFTWARE. If software is
modified to produce derivative works, such modified software should
be clearly marked, so as not to confuse it with the version available
from ANL.
#
Additionally, redistribution and use in source and binary forms, with
or without modification, are permitted provided that the following
conditions are met:
#
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
#
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in
the documentation and/or other materials provided with the
distribution.
#
* Neither the name of UChicago Argonne, LLC, Argonne National
Laboratory, ANL, the U.S. Government, nor the names of its
contributors may be used to endorse or promote products derived
from this software without specific prior written permission.
#
THIS SOFTWARE IS PROVIDED BY UChicago Argonne, LLC AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL UChicago
Argonne, LLC OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.
###
import sys
import os
import argparse
from dquality.check import hdf as hdf_check
from os.path import expanduser

def main(arg):

 parser = argparse.ArgumentParser()
 parser.add_argument("instrument", help="instrument name, name should have a matching directory in the .dquality folder")
 parser.add_argument("fname", help="file name to do the tag dependencies checks on")

 args = parser.parse_args()
 instrument = args.instrument
 fname = args.fname

 home = expanduser("~")
 conf = os.path.join(home, ".dquality", instrument)

 bad_indexes = hdf_check(conf, fname)
 return bad_indexes

if __name__ == "__main__":
 main(sys.argv[1:])

 Dependency Check

Dependency Check

DQuality Data Dependency check example. (Download file: hdf_dependency_check.py)

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86

	#!/usr/bin/env python
-*- coding: utf-8 -*-

###
Copyright (c) 2015, UChicago Argonne, LLC. All rights reserved.
#
Copyright 2015. UChicago Argonne, LLC. This software was produced
under U.S. Government contract DE-AC02-06CH11357 for Argonne National
Laboratory (ANL), which is operated by UChicago Argonne, LLC for the
U.S. Department of Energy. The U.S. Government has rights to use,
reproduce, and distribute this software. NEITHER THE GOVERNMENT NOR
UChicago Argonne, LLC MAKES ANY WARRANTY, EXPRESS OR IMPLIED, OR
ASSUMES ANY LIABILITY FOR THE USE OF THIS SOFTWARE. If software is
modified to produce derivative works, such modified software should
be clearly marked, so as not to confuse it with the version available
from ANL.
#
Additionally, redistribution and use in source and binary forms, with
or without modification, are permitted provided that the following
conditions are met:
#
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
#
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in
the documentation and/or other materials provided with the
distribution.
#
* Neither the name of UChicago Argonne, LLC, Argonne National
Laboratory, ANL, the U.S. Government, nor the names of its
contributors may be used to endorse or promote products derived
from this software without specific prior written permission.
#
THIS SOFTWARE IS PROVIDED BY UChicago Argonne, LLC AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL UChicago
Argonne, LLC OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.
###
"""
Please make sure the installation :ref:`pre-requisite-reference-label` are met.

This script is specific for beamline 32id.

This example takes two mandatory parameters:
instrument: a string defining the detector that will be used. User can enter one of these choices:
'nanotomo', 'microtomo'.
The instrument determines a configuration file that will be used.
file: a file to be verified for dependencies according to schema.

This script calls dependency_check verifier.

"""
import sys
import os
import argparse
from dquality.check import hdf_dependency as dependency_check
from os.path import expanduser

def main(arg):

 parser = argparse.ArgumentParser()
 parser.add_argument("instrument", help="instrument name, name should have a matching directory in the .dquality folder")
 parser.add_argument("fname", help="file name to do the tag dependencies checks on")

 args = parser.parse_args()
 instrument = args.instrument
 fname = args.fname

 home = expanduser("~")
 conf = os.path.join(home, ".dquality", instrument)

 bad_indexes = dependency_check(conf, fname)
 return bad_indexes

if __name__ == "__main__":
 main(sys.argv[1:])

 File Monitor

File Monitor

DQuality Folder Monitoring example. (Download file: monitor_check.py)

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74

	#!/usr/bin/env python
-*- coding: utf-8 -*-

###
Copyright (c) 2015, UChicago Argonne, LLC. All rights reserved.
#
Copyright 2015. UChicago Argonne, LLC. This software was produced
under U.S. Government contract DE-AC02-06CH11357 for Argonne National
Laboratory (ANL), which is operated by UChicago Argonne, LLC for the
U.S. Department of Energy. The U.S. Government has rights to use,
reproduce, and distribute this software. NEITHER THE GOVERNMENT NOR
UChicago Argonne, LLC MAKES ANY WARRANTY, EXPRESS OR IMPLIED, OR
ASSUMES ANY LIABILITY FOR THE USE OF THIS SOFTWARE. If software is
modified to produce derivative works, such modified software should
be clearly marked, so as not to confuse it with the version available
from ANL.
#
Additionally, redistribution and use in source and binary forms, with
or without modification, are permitted provided that the following
conditions are met:
#
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
#
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in
the documentation and/or other materials provided with the
distribution.
#
* Neither the name of UChicago Argonne, LLC, Argonne National
Laboratory, ANL, the U.S. Government, nor the names of its
contributors may be used to endorse or promote products derived
from this software without specific prior written permission.
#
THIS SOFTWARE IS PROVIDED BY UChicago Argonne, LLC AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL UChicago
Argonne, LLC OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.
###
import sys
import os
import argparse
from dquality.check import monitor as monitor_check
from os.path import expanduser

def main(arg):

 parser = argparse.ArgumentParser()
 parser.add_argument("instrument", help="instrument name, name should have a matching directory in the .dquality folder")
 parser.add_argument("fname", help="folder name to monitor for files")
 parser.add_argument("numfiles", help="number of files to monitor for")

 args = parser.parse_args()
 instrument = args.instrument
 fname = args.fname
 num_files = args.numfiles

 home = expanduser("~")
 conf = os.path.join(home, ".dquality", instrument)

 bad_indexes = monitor_check(conf, fname, num_files)
 return bad_indexes

if __name__ == "__main__":
 main(sys.argv[1:])

 PV Check

PV Check

DQuality PV check example. (Download file: pv_check.py)

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84

	#!/usr/bin/env python
-*- coding: utf-8 -*-

###
Copyright (c) 2015, UChicago Argonne, LLC. All rights reserved.
#
Copyright 2015. UChicago Argonne, LLC. This software was produced
under U.S. Government contract DE-AC02-06CH11357 for Argonne National
Laboratory (ANL), which is operated by UChicago Argonne, LLC for the
U.S. Department of Energy. The U.S. Government has rights to use,
reproduce, and distribute this software. NEITHER THE GOVERNMENT NOR
UChicago Argonne, LLC MAKES ANY WARRANTY, EXPRESS OR IMPLIED, OR
ASSUMES ANY LIABILITY FOR THE USE OF THIS SOFTWARE. If software is
modified to produce derivative works, such modified software should
be clearly marked, so as not to confuse it with the version available
from ANL.
#
Additionally, redistribution and use in source and binary forms, with
or without modification, are permitted provided that the following
conditions are met:
#
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
#
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in
the documentation and/or other materials provided with the
distribution.
#
* Neither the name of UChicago Argonne, LLC, Argonne National
Laboratory, ANL, the U.S. Government, nor the names of its
contributors may be used to endorse or promote products derived
from this software without specific prior written permission.
#
THIS SOFTWARE IS PROVIDED BY UChicago Argonne, LLC AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL UChicago
Argonne, LLC OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.
###
"""
Please make sure the installation :ref:`pre-requisite-reference-label` are met.

This script is specific for beamline 32id.

This example takes two mandatory parameters:
instrument: a string defining the detector that will be used. User can enter one of these choices:
'nanotomo', 'microtomo'.
The instrument determines a configuration file that will be used.
file: a file to be verified for dependencies according to schema.

This script calls hdf_check verifier.

"""
import sys
import os
import argparse
from dquality.check import pv as pv_check
from os.path import expanduser

def main(arg):

 parser = argparse.ArgumentParser()
 parser.add_argument("instrument", help="instrument name, name should have a matching directory in the .dquality folder")

 args = parser.parse_args()
 instrument = args.instrument

 home = expanduser("~")
 conf = os.path.join(home, ".dquality", instrument)

 bad_indexes = pv_check(conf)
 return bad_indexes

if __name__ == "__main__":
 main(sys.argv[1:])

 Realtime Check

Realtime Check

DQuality real time check example. (Download file: realtime_check.py)

	 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132

	#!/usr/bin/env python
-*- coding: utf-8 -*-

###
Copyright (c) 2015, UChicago Argonne, LLC. All rights reserved.
#
Copyright 2015. UChicago Argonne, LLC. This software was produced
under U.S. Government contract DE-AC02-06CH11357 for Argonne National
Laboratory (ANL), which is operated by UChicago Argonne, LLC for the
U.S. Department of Energy. The U.S. Government has rights to use,
reproduce, and distribute this software. NEITHER THE GOVERNMENT NOR
UChicago Argonne, LLC MAKES ANY WARRANTY, EXPRESS OR IMPLIED, OR
ASSUMES ANY LIABILITY FOR THE USE OF THIS SOFTWARE. If software is
modified to produce derivative works, such modified software should
be clearly marked, so as not to confuse it with the version available
from ANL.
#
Additionally, redistribution and use in source and binary forms, with
or without modification, are permitted provided that the following
conditions are met:
#
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
#
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in
the documentation and/or other materials provided with the
distribution.
#
* Neither the name of UChicago Argonne, LLC, Argonne National
Laboratory, ANL, the U.S. Government, nor the names of its
contributors may be used to endorse or promote products derived
from this software without specific prior written permission.
#
THIS SOFTWARE IS PROVIDED BY UChicago Argonne, LLC AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL UChicago
Argonne, LLC OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.
###
"""
Please make sure the installation :ref:`pre-requisite-reference-label` are met.

This script is specific for beamline 32id.

This example takes one mandatory parameter, and three optional:
instrument: a string defining the detector that will be used. User can enter one of these choices:
'32id_nano', '32id_micro'. The instrument determines the directory to look for a configuration file that will be used.
type: optional parameter, data type to be verified (i.e. data_dark, data_white or data), defaulted to 'data'
report_file: optional parameter, name of report file, defaulted to None
report_type: optional parameter, report type, currently supporting REPORT_NONE, REPORT_ERRORS, and REPORT_FULL,
defaulted to REPORT_FULL.

This script calls real_time verifier.

"""
import sys
import os
import argparse
import dquality.check_rt as rt
from os.path import expanduser

def main(arg):

 parser = argparse.ArgumentParser()
 parser.add_argument("instrument", help="instrument name, name should have a matching directory in the .dquality folder")
 parser.add_argument("--report_file", default=None, help="optional, name of report file")
 parser.add_argument("--sequence", default=None, help="optional, expected sequence of data types")

 args = parser.parse_args()
 instrument = args.instrument
 report_file = args.report_file
 sequence = args.sequence

 home = expanduser("~")
 conf = os.path.join(home, ".dquality", instrument)

 bad_indexes = rt.realtime(conf, report_file, sequence)
 return bad_indexes

if __name__ == "__main__":
 main(sys.argv[1:])

sequence example
variableDict = {'PreDarkImages': 5,
'PreWhiteImages': 10,
'Projections': 60,
'PostDarkImages': 5,
'PostWhiteImages': 10}
sequence = []
index = -1
try:
images = variableDict['PreDarkImages']
index += images
sequence.append(('data_dark', index))
except KeyError:
pass
try:
images = variableDict['PreWhiteImages']
index += images
sequence.append(('data_white', index))
except KeyError:
pass
try:
images = variableDict['Projections']
index += images
sequence.append(('data', index))
except KeyError:
pass
try:
images = variableDict['PostDarkImages']
index += images
sequence.append(('data_dark', index))
except KeyError:
pass
try:
images = variableDict['PostWhiteImages']
index += images
sequence.append(('data_white', index))
except KeyError:
pass
#
json_sequence = json.dumps(sequence).replace(" ","")
#

 Frequently asked questions

Frequently asked questions

Here’s a list of questions.

Questions

	How can I report bugs?

How can I report bugs?

The easiest way to report bugs or get help is to open an issue on GitHub.
Simply go to the project GitHub page [https://github.com/bfrosik/data-quality],
click on Issues [https://github.com/bfrosik/data-quality] in the
right menu tab and submit your report or question.

 Credits

Credits

References

	[C1]	Data Quality Control. http://cbs.fas.harvard.edu/science/core-facilities/neuroimaging/information-investigators/qc. Accessed: 2016-03-02.

	[C2]	MRI Quality Control. http://cbs.fas.harvard.edu/usr/mcmains/CBS_MRI_Quality_Control_Workshop.pdf. Accessed: 2016-03-02.

	[C3]	L.

 Howto

Howto

This file provides instructions how to use the framework to add more features.

How to define quality check functions in quality_checks.json file.

This framework classifies two types of quality checks: the frame verification check, and statistical check.
Frame verification check calculates characteristic of a given frame (for example mean value) and tests the result against limits.
Statistical quality check uses previously stored results of frame verification check to evaluate the current result.

Follow the steps below to add a frame verification check:
- add the method in dquality.common.qualitychecks.py file. The signature should be: function_name(data, index, results, all_limits). Look at the example method “validate_mean_signal_intensity” for the meaning of the parameters.
- define quality id in a dquality/common/constants.py file that is unique in respect to other quality checks constants, and update mapper in the constants.py file. The constant value should be less than 100.
- add a dictionary entry to the quality_checks.json file where key is the string representation of a constant defining the method, and value is an empty list.

Follow the steps below to add a statistical quality check:

	add the method to dquality/common/qualitychecks.py file. The signature should be: function_name(result, aggregate, results, all_limits). Look at the example statistical method “validate_stat_mean” for the meaning of the parameters.

	define quality id in a dquality/common/constants.py file that is unique in respect to other quality checks constants, and update mapper in the constants.py file. The constant value should be greater or equal 100.

	find a key of the frame verification check that the statistical check uses, and add an entry to the corresponding list, where the entry is a a constant defining the statistical check method.

example:

The following quality_checks.json file { “QUALITYCHECK_MEAN” : [“STAT_MEAN”], “QUALITYCHECK_STD” : []} defines that each frame will be verified by frame verification functions:
defined by constants: QUALITYCHECK_MEAN, and QUALITYCHECK_STD. Right aftre a frame is evaluated with QUALITYCHECK_MEAN, the statistical quality check STAT_MEAN evaluates the frame further, using the previous results.

 Python Module Index

 Python Module Index

 d

 		 	

 		
 d	

 	[image: -]
 	
 dquality	

 	
 	
 dquality.hdf	

 	
 	
 dquality.hdf_dependency	

 	
 	
 dquality.pv	

 	
 	
 dquality.realtime	

 Index

Index

 D
 | F
 | I
 | R
 | S
 | T
 | V

D

 	
 	dquality (module), [1]

 	dquality.hdf (module)

 	
 	dquality.hdf_dependency (module)

 	dquality.pv (module)

 	dquality.realtime (module)

F

 	
 	find_value() (in module dquality.hdf_dependency)

I

 	
 	init() (in module dquality.hdf)

 	(in module dquality.hdf_dependency)

 	(in module dquality.pv)

R

 	
 	read() (in module dquality.pv)

 	
 	report_items() (in module dquality.hdf)

S

 	
 	state() (in module dquality.pv)

 	
 	structure() (in module dquality.hdf)

T

 	
 	tags() (in module dquality.hdf)

V

 	
 	verify() (in module dquality.hdf)

 	(in module dquality.hdf_dependency)

 	(in module dquality.pv)

 	
 	verify_list() (in module dquality.hdf_dependency)

_static/plus.png

_static/ajax-loader.gif

_static/file.png

_static/up.png

_static/up-pressed.png

_static/down-pressed.png

_static/down.png

_static/minus.png

_static/comment-close.png

_static/comment-bright.png

_static/comment.png

nav.xhtml

 Table of Contents

 		Indices and tables

 		About

 		Install

 		Pre-requisites

 		Installing from source

 		Installing from Conda/Binstar (coming soon)

 		Updating the installation (coming soon)

 		Cofiguration

 		common configuration

 		pv verifier

 		hdf verifier

 		dependency verifier

 		data verifier

 		monitor

 		accumulator

 		real_time verifier

 		API reference

 		dquality.realtime.real_time

 		dquality.realtime.check

 		dquality.accumulator

 		dquality.check

 		dquality.data

 		dquality.hdf

 		dquality.hdf_dependency

 		dquality.monitor

 		dquality.pv

 		Examples

 		File Accumulator

 		Data Quality

 		HDF File

 		Dependency Check

 		File Monitor

 		PV Check

 		Realtime Check

 		Frequently asked questions

 		How can